Demo#
Vortex dynamics#
In this example, we are going to simulate vortex core dynamics. After creating a vortex structure, we are first going to displace it by applying an external magnetic field. We will then turn off the external field, and compute the time-development of the system, and then be able to see the dynamics of the vortex core.
The sample is a two-dimensional Permalloy disk sample with \(r=50 \,\text{nm}\) edge length and \(10\,\text{nm}\) thickness. Its energy equation consists of ferromagnetic exchange, Zeeman, and demagnetisation energy terms:
where \(A = 13 \,\text{pJ}\,\text{m}^{-1}\) is the exchange energy constant, \(M_\text{s} = 8 \times 10^{5} \,\text{A}\,\text{m}^{-1}\) magnetisation saturation, \(w_\text{d}\) demagnetisation energy density, \(\mathbf{H}\) an external magnetic field, and \(\mathbf{m}=\mathbf{M}/M_\text{s}\) the normalised magnetisation field.
The magnetisation dynamics is governed by the Landau-Lifshitz-Gilbert equation consisting of precession and damping terms:
where \(\gamma_{0} = 2.211 \times 10^{5} \,\text{m}\,\text{A}^{-1}\,\text{s}^{-1}\) and \(\alpha = 0.05\) is the Gilbert damping.
The (initial) magnetisation field is a vortex state, whose magnetisation at each point \((x, y, z)\) in the sample can be represented as \((m_{x}, m_{y}, m_{z}) = (-cy, cx, 0.1)\), with \(c = 10^{-9} \text{m}^{-1}\).
[1]:
# Some initial configurations
%config InlineBackend.figure_formats = ['svg'] # output matplotlib plots as SVG
import pandas as pd
import matplotlib.pyplot as plt
pd.options.display.max_rows = 5
pd.options.display.float_format = "{:,.2e}".format
System initialisation#
The Ubermag code for defining the micromagnetic system is:
[2]:
import discretisedfield as df
import micromagneticmodel as mm
# Geometry
r = 50e-9 # Radius of the thin nano magnetic disk (m)
thickness = 10e-9 # sample thickness (m)
# Material (Permalloy) parameters
Ms = 8e5 # saturation magnetisation (A/m)
A = 13e-12 # exchange energy constant (J/m)
# Dynamics (LLG equation) parameters
gamma0 = mm.consts.gamma0 # gyromagnetic ratio (m/As)
alpha = 0.05 # Gilbert damping
system = mm.System(name="vortex_dynamics")
# Energy equation. We omit Zeeman energy term, because H=0.
system.energy = mm.Exchange(A=A) + mm.Demag()
# Dynamics equation
system.dynamics = mm.Precession(gamma0=gamma0) + mm.Damping(alpha=alpha)
# initial magnetisation state
def m_init(point):
x, y, _ = point
c = 1e9 # (1/m)
return (-c * y, c * x, 0.1)
# Defining the geometry of the material as a circular disk
def Ms_func(point):
x, y, _ = point
if x**2 + y**2 <= r**2:
return Ms
else:
return 0
# Sample's centre is placed at origin
region = df.Region(p1=(-r, -r, -thickness / 2), p2=(r, r, thickness / 2))
mesh = df.Mesh(region=region, cell=(5e-9, 5e-9, 10e-9))
system.m = df.Field(mesh, nvdim=3, value=m_init, norm=Ms_func, valid="norm")
The system object is now defined and we can investigate some of its properties:
[3]:
system.energy
[3]:
[4]:
system.dynamics
[4]:
[5]:
system.m.orientation.sel("z").mpl()
Energy minimisation#
To carry out micromagnetic simulation, we need to use a micromagnetic calulator. We are going to use OOMMF for this. We can now relax the system in the absence of external magnetic field using energy minimisation driver (MinDriver
):
[6]:
import oommfc as oc # Micromagnetic Calculator
md = oc.MinDriver()
md.drive(system)
system.m.orientation.sel("z").mpl()
Running OOMMF (ExeOOMMFRunner)[2024/08/09 18:15]... (0.4 s)
Displacement with magnetic field#
Now, we have a relaxed vortex state, with its core at the centre of the sample. As the next step, we want to add an external magnetic field \(H=3.4 \times 10^{4}\,\text{Am}^{-1}\) in the positive \(x\)-direction to displace the vortex core. We do that by adding the Zeeman energy term to the energy equation:
[7]:
H = (3.4e4, 0, 0) # an external magnetic field (A/m)
system.energy += mm.Zeeman(H=H)
md.drive(system)
system.m.orientation.sel("z").mpl()
Running OOMMF (ExeOOMMFRunner)[2024/08/09 18:15]... (0.5 s)
Free relaxation#
The vortex core is now displaced in the positive \(y\)-direction. As the last step, we are going to turn off the external magnetic field and simulate dynamics using TimeDriver
. We are going to run simulation for \(20\,\text{ns}\) and save the magnetisation in \(500\) steps.
[8]:
system.energy -= mm.Zeeman(H=H)
td = oc.TimeDriver()
td.drive(system, t=20e-9, n=500, verbose=2)
Running OOMMF (ExeOOMMFRunner)[2024/08/09 18:15] took 36.6 s
The final magnetisation state shows that the vortex core has moved back to the sample’s centre.
[9]:
system.m.orientation.sel("z").mpl()
Data analysis#
Spatially averaged data#
The table with scalar data saved during the simulation. Each row corresponds to one of the 500 saved configurations. We only show selected columns.
[10]:
system.table.data[["t", "mx", "my", "mz", "E"]].head()
[10]:
t | mx | my | mz | E | |
---|---|---|---|---|---|
0 | 4.00e-11 | 4.18e-01 | 5.03e-02 | 1.82e-02 | 3.94e-18 |
1 | 8.00e-11 | 4.27e-01 | 1.92e-01 | 1.07e-02 | 3.89e-18 |
2 | 1.20e-10 | 4.26e-01 | 2.63e-01 | 3.90e-02 | 3.86e-18 |
3 | 1.60e-10 | 3.05e-01 | 2.82e-01 | 7.84e-03 | 3.83e-18 |
4 | 2.00e-10 | 2.57e-01 | 3.97e-01 | 2.66e-02 | 3.80e-18 |
We can now plot the average \(m_{x}\), \(m_{y}\) and \(m_{z}\) values as taken from the table as a function of time to give us an idea of the vortex core position.
[11]:
system.table.mpl(y=["mx", "my", "mz"])
Spatially resolved data#
Finally, we are going to have a look at the magnetisation field at different time-steps using micromagneticdata
.
[12]:
import micromagneticdata as mdata
data = mdata.Data(system.name)
data.info
[12]:
drive_number | date | time | driver | adapter | n_threads | t | n | |
---|---|---|---|---|---|---|---|---|
0 | 0 | 2024-08-09 | 18:15:22 | MinDriver | oommfc | None | NaN | NaN |
1 | 1 | 2024-08-09 | 18:15:23 | MinDriver | oommfc | None | NaN | NaN |
2 | 2 | 2024-08-09 | 18:15:23 | TimeDriver | oommfc | None | 2.00e-08 | 5.00e+02 |
To interactively inspect the time dependent magnetisation, we use data[-1]
to refer to the last drive.
[13]:
data[-1].hv(
kdims=["x", "y"], vdims=["x", "y"], scalar_kw={"cmap": "viridis", "clim": (0, Ms)}
)
[13]:
We can now compute winding number using operators from discretisedfield
:
[14]:
import math
m = system.m.orientation.sel("z")
S = m.dot(m.diff("x").cross(m.diff("y"))).integrate() / (4 * math.pi)
S
[14]:
array([0.42290507])
The winding number is commonly used and there is a predefined function in discretisedfield.tools
. To get more accurate results we use a different numerical method than just “naively” evaluating the integral.
[15]:
df.tools.topological_charge(system.m.sel("z"), method="berg-luescher")
[15]:
0.5024556893362209
We can also plot the topological charge density in an interactive plot.
[16]:
data[-1].register_callback(
lambda f: df.tools.topological_charge_density(f.sel("z"))
).hv(kdims=["x", "y"])
[16]:
Trajectory of the vortex core#
We can compute the trajectory of the vortex core via the center of mass of the topological charge:
[17]:
rho = df.tools.topological_charge_density(system.m.sel("z"))
r = system.m.sel("z").mesh.coordinate_field()
R = (r * rho).integrate() / rho.integrate()
R
[17]:
array([6.24115029e-12, 4.54330907e-12])
Now, we need to find the center of the vortex at each time step, this can be achieved by taking the data from last drive.
[18]:
def compute_vortex_centre(drive):
x_coords = []
y_coords = []
r = drive[0].sel("z").mesh.coordinate_field()
for m in drive:
tcd = df.tools.topological_charge_density(m.sel("z"))
centre_of_mass = (r * tcd).integrate() / tcd.integrate()
x_coords.append(centre_of_mass[0])
y_coords.append(centre_of_mass[1])
return pd.DataFrame(
{"t": drive.table.data["t"], "pos x": x_coords, "pos y": y_coords}
)
[19]:
pos_pol_plus = compute_vortex_centre(data[-1])
We can now plot the vortex trajectory on top of the initial configuration.
[20]:
fig, ax = plt.subplots()
data[-1][0].orientation.sel("z").mpl(ax=ax, scalar_kw={"clim": (0, 1)})
ax.plot(pos_pol_plus["pos x"] * 1e9, pos_pol_plus["pos y"] * 1e9, c="yellow")
[20]:
[<matplotlib.lines.Line2D at 0x7f77d042df90>]
Finally, let us delete all simulation files:
[21]:
oc.delete(system)