Precession#
- class micromagneticmodel.Precession(**kwargs)#
Precession dynamics term.
\[\frac{\text{d}\mathbf{m}}{\text{d}t} = -\frac{\gamma_{0}}{1 + \alpha^{2}} \mathbf{m} \times \mathbf{H}_\text{eff}\]- Parameters:
gamma0 (numbers.Real, dict, discretisedfield.Field) – If a single unsigned value
numbers.Real
is passed, a spatially constant parameter is defined. For a spatially varying parameter, either a dictionary, e.g.gamma={'region1': 1e5, 'region2': 5e5}
(if the parameter is defined “per region”) ordiscretisedfield.Field
is passed.
Examples
Defining the precession dynamics term using scalar.
>>> import micromagneticmodel as mm ... >>> precession = mm.Precession(gamma0=mm.consts.gamma0)
Defining the precession dynamics term using dictionary.
>>> precession = mm.Precession(gamma0={'region1': 1e5, 'region2': 2e6})
Defining the precession dynamics term using
discretisedfield.Field
.
>>> import discretisedfield as df ... >>> region = df.Region(p1=(0, 0, 0), p2=(5e-9, 5e-9, 5e-9)) >>> mesh = df.Mesh(region=region, n=(5, 5, 5)) >>> gamma0 = df.Field(mesh, nvdim=1, value=5e5) >>> precession = mm.Precession(gamma0=gamma0)
An attempt to define the precession dynamics term using a wrong value.
>>> precession = mm.Precession(gamma0=-5) # negative value Traceback (most recent call last): ... ValueError: ...
Methods
__add__
Binary
+
operator.__dir__
Default dir() implementation.
__eq__
Relational operator
==
.__iter__
Iterator.
__repr__
Representation string.
dmdt
Properties
gamma0
Descriptor allowing setting attributes with a value described as
descriptor
or a dictionary.name
Name.