Deriving energy values#

In this tutorial, we show how derived fields and values can be computed after the micromagnetic system is defined.

Simulation#

First of all, as usual, we import oommfc and discretisedfield.

[1]:
import oommfc as oc
import discretisedfield as df
import micromagneticmodel as mm

We define the cube mesh with edge length \(10 \,\text{nm}\) and cell discretisation edge \(1 \,\text{nm}\).

[2]:
mesh = df.Mesh(p1=(0, 0, 0), p2=(10e-9, 10e-9, 10e-9), cell=(1e-9, 1e-9, 1e-9))
mesh.mpl()
../../_images/examples_notebooks_11-tutorial-deriving-fields_3_0.png

Now we define the system object and its Hamiltonian.

[3]:
system = mm.System(name='system')

A = 1e-11
H = (0.1/mm.consts.mu0, 0, 0)
K = 1e3
u = (1, 1, 1)
system.energy = (mm.Exchange(A=A)
                 + mm.Demag()
                 + mm.Zeeman(H=H)
                 + mm.UniaxialAnisotropy(K=K, u=u))

system.energy
[3]:
$- A \mathbf{m} \cdot \nabla^{2} \mathbf{m}-\frac{1}{2}\mu_{0}M_\text{s}\mathbf{m} \cdot \mathbf{H}_\text{d}-\mu_{0}M_\text{s} \mathbf{m} \cdot \mathbf{H}-K (\mathbf{m} \cdot \mathbf{u})^{2}$

We will now intialise the system in \((0, 0, 1)\) direction with \(M_\text{s} = 8\times 10^{5} \,\text{A/m}\) and relax the magnetisation.

[4]:
Ms = 8e5
system.m = df.Field(mesh, nvdim=3, value=(0, 0, 1), norm=Ms)

Effective field#

All computations are performed using oc.compute, where oc is the micromagnetic calculator we choose at import. compute function takes two arguments:

  1. Property we want to compute

  2. System object

Total effective field is:

[5]:
oc.compute(system.energy.effective_field, system).sel('x').mpl()
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.4 s)
../../_images/examples_notebooks_11-tutorial-deriving-fields_9_1.png

Similarly, the individual exchange effective field is:

[6]:
Hex_eff = oc.compute(system.energy.exchange.effective_field, system)
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.2 s)

Because we initialised the system with the uniform state, we expect this effective field to be zero.

[7]:
Hex_eff.mean()
[7]:
array([0., 0., 0.])

The energy density is:

[8]:
w = oc.compute(system.energy.density, system)
w.sel('x').mpl()
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.2 s)
../../_images/examples_notebooks_11-tutorial-deriving-fields_15_1.png

Similarly, the energy (volume integral of energy density) is:

[9]:
E = oc.compute(system.energy.energy, system)
print(f'The energy of the system is {E} J.')
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.2 s)
The energy of the system is 1.3470795322e-19 J.

Relax the system#

[10]:
md = oc.MinDriver()
md.drive(system)
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.4 s)

Compute the energy (and demonstrate that the energy decreased) and plot its magnetisation:

[11]:
E = oc.compute(system.energy.energy, system)
print("The system's energy is {} J.".format(E))

system.m.sel('x').mpl()
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.2 s)
The system's energy is 5.35285533145e-20 J.
../../_images/examples_notebooks_11-tutorial-deriving-fields_21_1.png

Computing energies of individual term#

For instance, the exchange energy is:

[12]:
oc.compute(system.energy.exchange.energy, system)
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.4 s)
[12]:
1.12170191751e-21

We can also check the sum of all individual energy terms and check if it the same as the total energy.

[13]:
total_energy = 0
for term in system.energy:
    total_energy += oc.compute(term.energy, system)

print("The sum of energy terms is {} J.".format(total_energy))
print("The system's energy is {} J.".format(oc.compute(system.energy.energy, system)))
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.3 s)
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.3 s)
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.2 s)
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.2 s)
The sum of energy terms is 5.352855331462e-20 J.
Running OOMMF (ExeOOMMFRunner)[2023/10/23 16:06]... (0.3 s)
The system's energy is 5.35285533145e-20 J.